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LE'lTER TO THE EDITOR 
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t Physics Department, Darjeeling Government College, Darjeeling, West Bengal, India 
'$ Saha Institute of Nuclear Physics, 92 Acharya Prafulla Chandra Road, Calculatta 700009, 
West Bengal, India 

Received 15 June 1984 

Abstract. The large N ( N  =spatial dimensionality) expansion has already proven its 
efficacy in providing good approximation to the low energy bound states of quantal systems. 
The method is extended to yield easily calculable and surprisingly adequate estimates for 
scattering lengths for potentials which can support u p  to one bound state. 

The method of large-N expansions has provided a useful approximation scheme and 
is based on the surprising fact that increasing the number of degrees of freedom 
simplifies the analysis and this approach has amply proven its efficacy in fields as 
disparate as nuclear physics, critical phenomena and particle physics (Witten 1980, 
Yaffe 1982, 1983, Ma 1976, Iachello 1981, 't Hooft 1974a, b). Furthermore, at a more 
mundane level, the 1 / N  expansion has furnished a powerful tool for solving the 
Schrodinger equation to obtain low lying bound states in potential problems (Mlodinow 
and Shatz 1982, Mlodinow and Papanicolau 1980, 1981, Gangopadhyay et a1 1984, 
Ader 1983, Sukhatme et a1 1983). The most widely used perturbative method employed 
for problems not admitting analytical solution requires for its success the existence of 
a small parameter and a convergence of the corresponding series for relevant quantities, 
whereas the large N-method introduces a new expansion parameter which is 1/N. 
However, the method has so far been restricted to applications dealing with bound 
state problems whereas the present letter is an attempt to extend the large N method 
to scattering by providing an approximation to the estimation of scattering length. 

The ra$al Schrodinger equation in N-dimensions for a particle moving in a 
potential V (  r) (appropriately scaled and defined later) is, in units of h = 1 = 2m, given 
by 

which may be transformed into the effective one-dimensional form (in a semi-infinite 
region 0 S r s 03) of the Schrodinger equation through the substitution, 
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to yield, for the s wave ( I  = 0) states the equation 

( N  -3)( N - 1) - c ( r ) )u ( r )  =o. 
4r2 

For potentials less singular at the origin than l / r2  tke radial function u(r)  behaves as 
r(N-’)’z for small r. Accordingly if the potential V(r) is short ranged, the product 
Q( r )u(  r )  occurring in equation (21 shall generally possess a maximum, which, for 
large N and appropriately scaled V(r), shall become sharper and sharper enabling, 
in leading order, the approximate replacement of that term in the Schrodinger equation 
by ,a Dirac-delta potential located at a value of the radial coordinate r = a where 
In V( r)  +;( N - 1)  In r =f( r) is extremal, and has a corresponding strength given by 

For the sake of illustration consider the Yukawa potential V( r)  = - Vo eCPr/pr. It 
is appropriate to consider the scaled potential V(r) = - Vo e-GNr/bNr and accordingly 
f ( r )  = -bNr  +4(N -3)  In r, wherein the required extremum occurs at the point r = a = 
( N  - 3 ) / 2 k N  and the effective pseudo-potential in the limit of large N becomes 

$(=)(27F/p( a))l/2. 

and next substituting the value N = 3 (the dimensionality of the given problem), the 
effective pseudo potential for three dimensions is given by 

In a similar way the effective pseudo-potential may be trivially calculated for various 
potentials. 

For potentials with sharp boundaries such as the square well for which the derivative 
does not exist we take the relevant product of the wavefunction and potential to pile 
up at the edge ( r  = a )  of the square well and to provide a S function there. To calculate 
the strength ‘A’  of the pseudo-potential -AS( r - a )  we employ the knowledge of the 
exact wavefunction for the square well potential and obtain 

1: R(r)V(r)rN-’  d r  
J;R(r) S( r -a ) rN-’  dr ’  

A =  

which in the low energy limit is a j l (aa ) / jo (aa)  where a’= k 2  + u o .  

simply given by, 
Now once the pseudo-potential -AS( r - a )  is calculated, the scattering length is 

aSc= -Aa2/( 1 - A u ) ,  

which agrees exactly with the exact expression for the case of the square well (Schiff 
1955). 

The simple procedure delineated above is employed to calculate the scattering 
length in units of the parameter of various potentials as a function of depth (or strength) 
of the interaction and the results depicted graphically. For the sake of comparison, 
the scattering length in the Born approximation are also shown. The surprising 
adequacy of the approximation developed here is quite apparent. In particular the 
qualitative feature of the divergence of the scattering length as the strength becomes 
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sufficient to support one bound-state and the concommitant change in signs of the 
scattering length as the strength increases further is well reproduced in the scheme 
considered here. 
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Figure 1. Scattering length, in units where p = 1 as  a function of potential depth for various 
potentials. Exact values are displayed by full curves, while the Born and large N approxi- 
mates are shown by dotted and broken curves respectively. ( a )  Gaussian, V ( r )  = - Vo e - p r z ;  
( b )  Exponential, V (  r )  = - Vo 0“; ( c )  Yukawa, V (  r )  = -( V o / ~ )  e-”rr-’ ; ( d )  Bargmann, 
V ( r ) = - 2 / 3 f i 2 e - ” ( l  +/3 e-”‘)-’; ( e )  Hulthen, V(r)=-Voe-”‘(l -e-”‘)-’; (f) Poschl 
Tellar, V ( r )  = - p 2 h ( h  - 1 )  sech2 j u .  

The authors are grateful to Dr Gautam Ghosh, Dr Debajyoti Bhaumick and Dr Triptesh 
De for useful discussions and constant encouragement. 
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